Dietary Restriction Depends on Nutrient Composition to Extend Chronological Lifespan in Budding Yeast Saccharomyces cerevisiae

نویسندگان

  • Ziyun Wu
  • Shao Quan Liu
  • Dejian Huang
چکیده

The traditional view on dietary restriction has been challenged with regard to extending lifespan of the fruit fly Drosophila melanogaster. This is because studies have shown that changing the balance of dietary components without reduction of dietary intake can increase lifespan, suggesting that nutrient composition other than dietary restriction play a pivotal role in regulation of longevity. However, this opinion has not been reflected in yeast aging studies. Inspired by this new finding, response surface methodology was applied to evaluate the relationships between nutrients (glucose, amino acids and yeast nitrogen base) and lifespan as well as biomass production in four Saccharomyces cerevisiae strains (wild-type BY4742, sch9Δ, tor1Δ, and sir2Δ mutants) using a high throughput screening assay. Our results indicate that lifespan extension by a typical dietary restriction regime was dependent on the nutrients in media and that nutrient composition was a key determinant for yeast longevity. Four different yeast strains were cultured in various media, which showed similar response surface trends in biomass production and viability at day two but greatly different trends in lifespan. The pH of aging media was dependent on glucose concentration and had no apparent correlation with lifespan under conditions where amino acids and YNB were varied widely, and simply buffering the pH of media could extend lifespan significantly. Furthermore, the results showed that strain sch9Δ was more responsive in nutrient-sensing than the other three strains, suggesting that Sch9 (serine-threonine kinase pathway) was a major nutrient-sensing factor that regulates cell growth, cell size, metabolism, stress resistance and longevity. Overall, our findings support the notion that nutrient composition might be a more effective way than simple dietary restriction to optimize lifespan and biomass production from yeast to other organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Replication Stress Is a Determinant of Chronological Lifespan in Budding Yeast

The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which nutrient-depleted c...

متن کامل

Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. ...

متن کامل

Chronological and replicative lifespan in yeast

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

Acetic acid and acidification accelerate chronological and replicative aging in yeast

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

Effect of Different Levels of Dietary Supplementation of Saccharomyces cerevisiae on Growth Performance, Feed Utilization and Body Biochemical Composition of Nile Tilapia (Oreochromis niloticus) Fingerlings

This study was conducted to evaluate the effect of different levels of dietary supplementation of Saccharomyces cerevisiae on growth performance, feed utilization and body biochemical composition of Oreochromis niloticus fingerlings. Four diets containing supplementation at levels of 0, 0.5, 1 and 2 g kg−1 were fed to fingerlings of Nile tilapia (5.01±0.21 g) in four replicate tanks twice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013